
Modular Wayland compositors with wlroots

Drew DeVault et al ∗

December 28, 2017

Abstract

wlroots is a flexible and modular library upon which Wayland com-
positors can be built. It is designed to maximize several factors: code
reusability, interoperability between Wayland compositors, and flexibility
for use in novel compositor designs.

∗Complete list available at https://github.com/swaywm/wlroots/graphs/contributors

1

https://github.com/swaywm/wlroots/graphs/contributors


Contents

1 Background 3
1.1 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 High-level Design 4
2.1 Backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Wayland Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Convenience Utilities . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Rootston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Promoting an Interoperable Ecosystem 6
3.1 Security Considerations . . . . . . . . . . . . . . . . . . . . . . . 7

4 Project Status 7

2



1 Background

Wayland is a protocol used to communicate between user applications and a
compositor. The compositor has ownership over input and output resources–
typically displays connected over DVI, HDMI, etc, and keyboards, mice, etc.

wlroots (stylized in lowercase, or as ”wlr”) is a subproject of the Sway com-
positor. Originally, Sway was written on top of a similar library called wlc.
This library offered abstractions on top of DRM, GBM, GLES, libinput, and so
on– allowing Sway to focus on building the software specific to the compositor.
However, with time it became clear that wlc’s design is too limiting, and many
of Sway’s long-term goals were difficult to achieve with it.

As a result, we built wlroots. We believe it offers a substantially better basis
for development of Wayland compositors than any competing approach. We
offer a powerful library that removes most of the heavy lifting from building a
Wayland compositor while providing compositor authors as much flexibility in
their design as they might gain by doing it all themselves– I’ve jokingly referred
to wlroots as ”about 30,000 lines of code you were going to write anyway.” We
hope that compositors based on wlroots will be written faster, work better, and
will be better citizens of the broader Wayland ecosystem.

1.1 Alternatives

Several alternative approaches to building compositors exist.

libweston is the most notable alternative. It is a subproject of the Weston
compositor, the reference Wayland compositor. However, it is generally poorly
suited to novel compositors that don’t use the traditional desktop paradigm.
It is also less modular and difficult to break into several pieces. Additionally,
as a consequence of being refactored out of an existing compositor, it inherits
many design decisions of Weston itself, which may not be amenable to other
compositors.

swc and wlc are similar. They both strike a reasonable balance between
size and features, but both make decisions for the compositor that lock them
into particular designs and make novel compositors more difficult to write. The
advantage of their approach is that it is easy to use them to build a simple
working compositor - in a matter of minutes, not days or weeks.

Another approach is to simply write your compositor entirely in-house. This
is the approach favored by mutter and kwin of the GNOME and KDE projects
respectively. The advantage of this approach is the flexibility to design your
compositor in any way you please. However, lots of work is duplicated between
projects with this approach, which can (and does) lead to compositors which
are subtly incompatible with each other.

The approach taken by wlroots offers reusability and consistency between
compositors based on it, and offloads lots of work from the compositor imple-

3



mentation. This is accomplished without making design decisions on behalf of
the compositor implementation: we believe virtually any novel kind of compos-
itor can be built on top of wlroots.

The main disadvantage of our approach is that batteries are not included.
More work is required to get a working compositor compared to libweston or
wlc. However, you will not hit the limitations of these libraries, and will more
quickly arrive at a diverse featureset than with the kwin or mutter approaches.

2 High-level Design

Let’s summarize the important high-level components of wlroots.

2.1 Backends

The wlroots backends are similar to backends in other compositors, but are
more easily used standalone or in composite. A compositor based on wlroots
can use zero or more backends at a time, dynamically adding and removing
different backends (and different types of backends) at runtime. Each backend
is responsible for providing zero or more input and output devices, as well as an
EGL context (and support for maneuvering between EGL contexts is provided).
This design enables us to support use cases like multiple GPUs, scripting inputs
on your desktop by adding a headless backend, temporarily adding an RDP
backend with mirrored outputs to your session, and so on.

We currently offer DRM, libinput, Wayland, X11, and headless backends.
We have also written a virtual ”multi” backend which acts as a container for
multiple backends, with which you may add or remove backends at runtime. Use
of this multi-backend is necessary in most non-trivial compositors, for example,
to use DRM and libinput at the same time. Also provided is an interface with
which compositor authors can create their own backend implementations for
more novel systems, and we plan to write an RDP and fbdev backends in the
future.

2.2 Shells

Several implementations of Wayland shell state machines are included in wl-
roots. Their purpose is to provide largely non-opinionated implementations of
the various shells available on a Wayland desktop, and to delegate to the com-
positor for when opinions are necessary. We do not provide a grand unified shell
abstraction. Rather, we expose the subtleties of each shell to the compositor
author so they may have finer control over how these subtleties are addressed
given the constraints of their particular compositor design.

Provided are implementations of wl shell, xdg shell, and Xwayland. The
latter is quite thorough, on the assumption that the last thing the author of a
Wayland compositor wants to do is write an X11 window manager too. However,

4



it is as flexible as any other shell, and you are able to reach in and tweak it to
suit your compositor’s needs.

2.3 Wayland Protocols

In addition to shell protocols, implementations of various other protocols are
provided. This includes core protocols like wl data device manager, wl compos-
itor, wl surface, and so on, but also includes some third-party protocols such as
Orbital’s screenshooter protocol and GTK’s primary selection protocol. When
appropriate, integrations with wlroots implementations of other protocols may
be necessary, such as interactions between wlr seat and wlr data device man-
ager, or syncronizing GTK’s Wayland primary selection with Xwayland.

Each of these protocols, like the shells and everything else, is opt-in. The
compositor author chooses if our implementations suit their needs, and if not,
their own implementation is easily used instead and interops correctly with the
rest of wlroots. For some important protocols (such as wlr seat), disentangling
it from the rest of wlroots can be more difficult– but in these cases we’ve made
our implementation extremely flexible to make it less likely that it will not suit
your needs.

2.4 Convenience Utilities

We also provide optional implementations of functionality common to most
Wayland compositors, which can be integrated with the rest of wlroots to any
degree the compositor author chooses. This includes modules which help you
manage the layout of outputs in physical space (and arranging windows on a
virtual desktop), help you map input from pointers, touch, etc onto cursors
shown on-screen, or to read cursor bitmaps from Xcursor themes for use when
your compositor overrides client cursors.

These interfaces are also quite modular and composable, and will generally
work in the absence of other wlroots features, or offer more functionality in their
presence. The wlr cursor module, for example, will allow you to limit cursor
movement to within the bounds of a wlr output layout, should you choose to
utilize that as well. We also provide a renderer module, which utilizes gles2 to
provides simple rendering support which should be suitable for any compositor
that does not require complex shaders or projections.

2.5 Rootston

Bringing all of this together is our reference compositor, Rootston. As Weston is
to libweston, Rootston is to wlroots. However, Rootston is more conservative–
it is a very simple stacking window manager that has only a few convenience
features on top of demonstrating the capabilities of wlroots. This makes it
quite unsuitable as a practical end-user compositor. However, in its role of
demonstrating the capabilities of wlroots, it does a fine job, and any compositor

5



author hoping to use wlroots will likely find themselves reading, and perhaps
copying, large swaths of Rootston’s code.

Like the wlroots library itself, Rootston is MIT licensed and users are encour-
aged to copy and adapt any code they find useful for their own compositors.
Many of the batteries that are ”not included” with wlroots can be found in
Rootston.

3 Promoting an Interoperable Ecosystem

We believe that it is tremendously important for more Wayland compositors to
be extensible by their users and for these tools to work across the entire Wayland
desktop ecosystem. No one will switch from X11 to Wayland for security alone–
we must make compositors that offer compelling features and do not ask the
user to sacrifice the workflows they’ve grown used to, insecure as they may have
been on X11.

We are committed to implementing the necessary Wayland protocol exten-
sions to support these features. Where extensions already exist, we are imple-
menting them: we provide implementations of KDE’s server decoration protocol,
GTK’s primary selection protocol, and Orbital’s screenshot protocol; and in the
future we intend to implement more. Where protocols do not exist, we are
creating new ones.

Consider an on-screen keyboard– getting it right is complicated. There are
many keyboard layouts to consider, and localization may be difficult. Sup-
port for typing in pinyin (Chinese) or romaji (Japanese) will be difficult to
do correctly. Useful features like providing prompts for autocomplete will also
take significant developer investment. We could do this many times for many
Wayland compositors, or we could push for a single implementation that is
compatible with all of our software.

The state of interopability in the Wayland ecosystem is something the wl-
roots team is deeply concerned about, and we worry that many compositors are
not taking this problem seriously. This is why we are implementing the pro-
tocols of other desktops and toolkits, and building our own when these prove
insufficient. The first of our new protocols is surface layers. We believe this
protocol can support numerous use-cases in a single simple protocol, such as:

• desktop shells

• lock screens

• on screen keyboards

• notification daemons

• custom program launchers

• magnifying glass tools

6



The details of the protocol or its implementation are out of scope for this
document, and in any case are changing as we develop it. Here it serves as
a call to action for other compositors to participate in its development and
implementation, and as an example of the sorts of functionality we’re committed
to providing on Wayland.

3.1 Security Considerations

A major concern in implementing many of these features is doing them in a
secure way. Making these interfaces available to third-party software securely is
the subject of ongoing research and discussion, but we do not believe that the
issue is too poorly understood to proceed with implementing these features. In
wlroots, we have chosen to leave securing these protocols as a matter for the
compositor to support via wl display set global filter.

Let’s summarize ongoing efforts by compositors in this area. The Sway
compositor has, as of writing, invested the most effort in making privledged
protocols available to third parties. This is not without consequences– Sway’s
current implementation has known flaws. We are comfortable being more liberal
in our exploration in this area, hoping that we can become more secure over
time. Our justification for this approach is that, at worst, we begin with a
system no more secure than X11, but over time we will be able to secure it
more as we experiment with different approaches.

Sway’s approach today is configuration files, owned by root, which contain
a list of paths to executables and the permissions granted to each. To enforce
these, we look them up via /proc/[pid]/exe. This has a number of drawbacks we
are working to address. First, this is not very effective for interpreted programs,
e.g. /usr/bin/python3. Additionally, it may be possible on some platforms and
in some conditions to manipulate the value of /proc/[pid]/exe. Utilizing procfs
is also not portable.

In the future we’re exploring the possibility of only permitting secure access
for clients which were forked from Sway. This approach should solve most of
the outstanding problems, but other deficiencies remain. Granting permissions
to previously un-approved clients at runtime (with user content) requires addi-
tional work (something the Orbital compositor has explored). Offering similar
permissions to children of those processes when appropriate is also a non-trivial
problem.

Collaboration with the broader Wayland community in the matter of security
is highly sought after. We ask you to participate in our discussions on the
subject; contact information is available at the end of this paper.

4 Project Status

Integrations with wlroots are well underway in the Wayland community.

7



Sway is a Wayland compositor compatible with the i3 window manager and
is the motivating force behind wlroots, and our port from wlc to wlroots is going
well. We’ve found it most effective to set aside our current code and start from
scratch, importing large parts of the old code as it becomes necessary. Porting is
no simple process, but it seems that it will be well worth it. Dozens of features
that our users have been asking for have been blocked behind this migration for
a long time, and many are already supported in our port1.

Way-Cooler is also working on porting their compositor from wlc to wl-
roots. In order to do so, they are developing wlroots-rs, a Rust wrapper over
the wlroots API. They intend to utilize this to implement a large subset of
the Awesome window manager’s Lua API, providing a compatible alternative
to AwesomeWM in a similar fashion as Sway does for i3. Their first order of
business is providing an equivalent of Rootston written in Rust.

waymonad is a new compositor based on wlroots– not a port of another
compositor. Like Sway fills i3’s niche and Way-Cooler fills AwesomeWM’s niche,
waymonad intends to fill Xmonad’s niche (though it seems that perfect com-
patibility is not presently a concern). To this end hsroots is underway, Haskell
wrappings for the wlroots API.

We’ve heard murmurings of a compositor written in Go as well. We are
excited about and prepared to support any other compositors that want to port
their plumbing to wlroots, as well as any new compositors that would like to use
wlroots from the outset. As the Sway port and other projects make progress,
we continue to prove the effecacy of the wlroots approach and stabilize its API,
and we are pushing towards 1.0 soon. Please reach out if you have feedback or
wish to participate.

https://github.com/swaywm/wlroots

irc://irc.freenode.net/#sway-devel

1Enumerated here: https://github.com/swaywm/sway/issues/1524

8

https://github.com/swaywm/wlroots
irc://irc.freenode.net/#sway-devel
https://github.com/swaywm/sway/issues/1524

	Background
	Alternatives

	High-level Design
	Backends
	Shells
	Wayland Protocols
	Convenience Utilities
	Rootston

	Promoting an Interoperable Ecosystem
	Security Considerations

	Project Status

